ANALYSIS OF WAVE PROPAGATION IN 1D INHOMOGENEOUS
MEDIA.

PATRICK GUIDOTTI*, JAMES V. LAMBERS!, AND KNUT SOLNA}

Abstract. In this paper we consider the one dimensional inhomogeneous wave equation with
particular focus on its spectral asymptotic properties and its numerical resolution. In a first part of
the paper we analyze the asymptotic nodal point distribution of high frequency eigenfunctions, which,
in turn will give further information about the asymptotic behavior of eigenvalues and eigenfunctions.
‘We then turn to the behavior of eigenfunctions in the high and low frequency limit. In the latter case
we derive an homogenization limit whereas in the first we show that a sort of self-homogenization
occurs at high frequencies. We also remark on the structure of the solution operator and its relation
to desired properties of any numerical approximation.

‘We subsequently shift our focus to the latter and present a Galerkin scheme based on a spectral
integral representation of the propagator in combination with Gaussian quadrature in the spectral
variable with a frequency-dependent measure. The proposed scheme yields accurate resolution of
both high and low frequency components of the solution and as a result proves to be more accurate
than available schemes at large time steps for both smooth and non-smooth speeds of propagation.

Key words. wave-propagation, spectral decomposition, homogenization, Krylov subspace spec-
tral methods
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1. Introduction. In this paper we consider the one dimensional inhomogeneous
wave equation

Opu — cA(2)0ppu =0 in (0,1) x R, (L.1)
u+B0,u=0 on {0,1} x R, '
with 8 = 0 and ¢ € Ly (0,1) and strictly positive. Our results remain valid for any
B € [0, 00] but, for the sake of brevity, we shall present them for the case § = 0 only.
After some remarks on the structure of the solution operator and on the implications
for its numerical approximability, we turn to the main focus of the paper: Spectral
asymptotics and numerical resolution of (1.1).
As for the asymptotic spectral properties of the generator, the general result of
[17, Theorem 1.2.1] would readily imply that

Lodx ?
Ay & kT /—),klare
* ( /oc<x) &

for the eigenvalues of the generator A = —c?(x)8,,. In this particular case, however,
led by the physical meaning of the coefficient ¢, we are able to obtain information
about the asymptotic behavior of the nodal points of high frequency eigenfunctions
and, from that, infer about their asymptotic shape. The analysis is based on a shooting
method for the computation of the eigenvalue/eigenfunction pairs and the self-similar
nature of the problem in combination with the use of a canonical transformation. In
particular, we observe that a sort of self-homogenization occurs at high frequencies
(cf. section 2.3). It turns out that the same ideas can be profitably employed to
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obtain homogenization results for rapidly varying coefficents. These are similar to the
result derived in for instance [14] for the self-adjoint case using a variational approach.
Here, however, our focus is an asymptotic approximation for the spectrum and we
present the approach in section 2.4.

Then, in section 3, we integrate some of the ideas developed into a numeri-
cal approach to high order/large time step resolution of (1.1). This approach em-
ploys Krylov subspace spectral methods, first introduced in [12]. These methods are
Galerkin methods in which each component of the solution in the chosen basis of
trial functions is computed using an approximation of the propagator belonging to a
low-dimensional Krylov subspace of the operator 4. Each approximation is based on
the use of Gaussian quadrature to evaluate Riemann-Stieltjes integrals over the spec-
tral domain as described in [7]. Because the Krylov subspace approximation of A is
constructed using Gaussian rules that are tailored to each component, all components
can be resolved more accurately than with traditional spectral methods.

Based on the encouraging results for the one dimensional case, we intend to pursue
the possibility of adapting the techniques used in this paper to perform similar analysis
in the higher dimensional case.

2. Analytic structure of the propagator. In this section we derive a spectral
representation formula for the solution of the inhomogeneous wave equation in a
bounded one dimensional interval as given in (1.1). In order to do so we need to
analyze the spectral properties of non-selfadjoint boundary value problem (A4, B) given
by

A=c(2)0z0 , (2.1)
B = ’Yj y _7 = 0, 1.

where 7; denotes the trace operator at j = 0,1. This is done in subsection 2.1.
The analytic structure of the solution makes the relation between the conservation
and reversibility properties of the equation apparent (subsection 2.2). In particular
they can be concisely formulated in terms of a functional relation satisfied by the
propagator (evolution operator).

2.1. Properties of the generator. We start by collecting some information
about the spectral properties of the generator, that is, of the boundary value problem
(2.1)-(2.2). We therefore study

—*(2)0pau = A, (2.3)
u(j)=0,7=0,1. (2.4)

Lemma 2.1. All eigenvalues of (2.1)-(2.2) are strictly positive and simple. The
eigenfunction corresponding to the first (smallest) eigenvalue can be chosen to be
positive.

Proof. Assume that A € C is an eigenvalue of (2.3)-(2.4) and w an associated

eigenfunction, then
1 2 1
,\/ Ju(z)| dx:/ 18,u(z)[? do
o c(z) 0

which implies the positivity of the eigenvalue. Moreover, an eigenvalue of (2.3)-(2.4)
is given when the boundary conditions are linearly dependent and therefore the kernel
has always at most dimension one, which gives simplicity of the eigenvalues. Finally
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since the operator has empty kernel and compact resolvent, the spectrum is a pure
point spectrum which concludes the proof. O

Borrowing from the self-adjoint terminology, we call the first eigenvalue A; the
principal eigenvalue. Next we show that it is a strictly monotone function of the size
of the domain.

Lemma 2.2. Let zy € (0,1) and A (zg) be the principal eigenvalue for the
Dirichlet problem for —c*(2)0,, on [0,z0). Then

A1) > Az0), 0< 21 <20 < 1.

Proof. Normalizing eigenfunctions ¢ by the requirement
9;¢(0) =1

we can look for them by considering the initial value problem
— Ozt = /\CQL@) , z €10,1], 25)
u(0) =0, O,u(0) =1.

For A = 0 no nontrivial solution can be found, but, by increasing its magnitude the
value of the solution at x = 1 can be reduced until it becomes zero for the first time.
This gives A1 and ¢; > 0 for [0,1]. It is therefore also obvious that A needs to be
further increased to obtain a zero at 1 < 1, which, in its turn, determines A\; and ¢
for the interval [0,24]. O

It turns out that we can determine all other eigenvalues and order them according
to their size or equivalently according to the number of their zeros.

Lemma 2.3. For every n € N there is exactly one simple eigenvalue A\, > 0 for
the Dirichlet problem for —c*(x)0s, on [0,1] such that the associated eigenfunction
©n has exactly n + 1 zeros (counting the boundary points).

Proof. By using exactly the same arguments as in the proof of lemma 2.2 one
can obtain all eigenfunctions as solutions the initial value problem (2.5) by gradually
increasing A in order to produce, one by one, new zeros in the interval [0,1]. They
therefore can be numbered by using their zeros. 0 Next we introduce a functional
setting which allows us to obtain a spectral representation of the operator. Let Lo (0, 1)
be the Lebesgues space of square integrable functions. Denote by A the Ly(0,1)-
realization of A with domain of definition given by dom(4) = H?(0,1) N Hy(0, 1), the
space of H? functions which vanish on the boundary. Since A has compact resolvent,
it allows for a spectral calculus.

Lemma 2.4. The operator A can be represented by

o0

A= Z )‘TL((;D:U )Qon ) (26)

n=1

where (¢n)nen and (pf)nen are the eigenfunctions of A and A* to the eigenvalue \,,,
respectively. Of course A* is given by the La-realization of —0,,(c?(x)-) with Dirichlet
boundary conditions.

Proof. Since all eigenvalues are simple and A = 0 is not one of them the operator
A~! doesn’t contain any nontrivial Jordan blocks nor it contains a quasi-nilpotent
operator. It follows that the operator A allows for the claimed spectral representation.
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See [3] for more details. One needs only to observe that the spectral projection Ej,
is given by (¢, ), where ¢} can be defined through

¢y Lspan{py : n # k € N} and (¢, pn) =1

and can be easily verified to be an eigenfunction of A* to the eigenvalue A,. O

REMARK 2.5. In general, the functions (pn)nen are not an orthogonal system.
They are, however, asymptotically orthogonal for smooth ¢ and almost orthogonal for
small perturbations of a constant ¢ as we shall see in the next sections.

2.2. Structure of the solution. The spectral representation of the generator A
allows us the obtain a representation of the solution operator (propagator) in terms of
the sine and cosine families generated by A by a simple functional calculus. Introduce

Ry(t) = A 25in(tv/A) : Zsm ) g @)

Ro(t) = cos(tVA) : Z cos(tv/An ) (0%, Yo (2.8)

where taking the square root of the operator poses no problem eventhough the oper-
ator is not self-adjoint. Then the propagator of (1.1) can be written as

L[ R R
r=[ fa i) 29

REMARK 2.6. The fact that the wave equation is reversible can be seen through
the identities

R3(t) + ARI(t) = idpy(0,1) , Ro(t)R1(t) = Ri(t)Ro(t), t € R (2.10)
which imply
id 0
PP =P p= |0 2.11
0 idp,(0,1) (2.11)

We observe that our ultimate goal is an efficient numerical scheme for the solution of
(1.1). We are in particular interested in non dissipative and non dispersive schemes.
The functional relations (2.10) make the constraints apparent which such a scheme
should satisfy. Next we introduce an appropriate energy norm ||-[|, 4 and show that it
is conserved along solutions of (1.1). This is done by means of the basis development
in terms of the eigenfunctions (¢ )nen. Let u € Ly(0,1), then we can write

oo

=Y (&} upn.

n=1
Un

Then, taking (u,v) € H§(0,1) x Ly(0,1), we define

o0

1w, )1z = 4| D_ (Antid +v2) (2.12)

n=1

whenever the right-hand-side is finite.
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REMARK 2.7. It is not a priori clear that (2.12) does define a norm which is
equivalent to the standard norm of H(0,1) x Ly(0,1). The asymptotic analysis of the
spectrum of A which is performed in the next subsection suggests that (on)nen s a
frame for Ly(0,1), which is essentially defined by the equivalence of those norms. For
a definition and characterization of frames we refer [2].

Lemma 2.8. For any solution of (1.1) with 8 =0 one has

[1(w(®), a(®)) 7z = [1(u(0),4(0))ll /5, t € R. (2.13)

Proof. Denote the initial value (u(0),4(0)) by (u®,4°). Then, by developing in
the basis of eigenfunctions, we can write the solution as

> 1

(Mmmm=(Zﬂwwwxhﬁ+wgmwwﬂﬁﬂ%,

> [ VAwsin(ty/Xa)ul, + cos(ty/An)id]pn) . (2:14)

A simple computation then shows that

> 1

n221 {)\n [cos(tm)u% + o sin(t\/g)a?l]2
+ [ = Vnsin(ty/An)ul + cos(t\/mug]z} = i An(uQ)? + (42)2.
n=1

2.3. High frequency spectral asymptotics. In this subsection we show that
a sort of self-homogenization occurs at high frequency which makes the asymptotic
behavior of the eigenvalues and eigenfunctions of A very simple. We begin with the
following lemma concerning small perturbations of the constant coefficient case.

Lemma 2.9. Assume that ¢ € C'([0,1]) 4s almost constant, that is, that ||c'|| <
€. Then the spectrum of A is a small perturbation of that of the operator A given by

dom A = H*([0,1]) N Hy([0,1]) , Au = E%(‘Bmu, u € dom(A) (2.15)

_ 1
forc= [ c(l—m) dz.
Proof. Introducing the change of variables given by

_ Jo dlg %

y = P(z) (2.16)
c
which leaves the interval invariant, the operator A in the new variables takes on the

form

1 c(®1

c c
The rest follows from the continuous dependence of the operator on its coefficient
functions. O



6 P. GUIDOTTI, J. V. LAMBERS AND K. SOLNA

REMARK 2.10. It should be observed that the coefficient ¢ can be thought of as
the speed of propagation through the medium in the interval [0,1]. Then the integral
fol Clz) dz can be interpreted as the time it takes to go from one end to other of the
medium. Thus the averaged coefficient actually measures the “effective size” of the
interval.

It turns out that this kind of averaging is always taking place regardless of the size
and shape of the coefficient c, at least at high frequencies. The next proposition makes
this precise and also gives an approximation for the high frequency eigenfunctions.

Proposition 2.11. For large n € N the asymptotic behavior of the eigenvlaues
of A is given by

An & % . (2.17)
(fo (&) d&)

Moreover, the eigenfunctions p, have the following asymptotic shape

¢n(z) = (1) sin(

T r—Tj-1

€|z ; 2.18
2 — 31 T, — 37]'—1) , @ € [zj-1,2;] (2.18)
where

TS S L S
4= (Scj —Zj-1 /z-_1 c(§) d§) .

J

and 0 =z9 < 11 < --- < x, = 1 have to be chosen such that

Zj 1 1 1 1 o
‘/3”1—1@615_5/0 @dg’]_l"'wn' (2.19)

Proof. We know from lemmata 2.1-2.3 that the n-th eigenfunction ¢, has n +1
zeros in [0,1]. Denote them by
O=xy<m1 <---<zx,=1.

If A\, is the associated eigenvalue, then it is also the principal eigenvalue M\, of the
problems

2(2)0zpu = Au, in [z;-1, 7]
U(JUj_l) = U(JUJ') =0.

for j =1,...,n. So, in particular one has M}, = X\,,, j = 1,...,n. By blowing up the
intervals [z; 1, z;] to the fixed interval [0, 1] by means of

T=2x5_1 +y(-’L'j—1 _"Ej)a Yy € [071]

we obtain

(zj—1—;)2

—ZW 5 d=Xi, in|0,1]
u(0) =u(1) =0.

where now é&(y) = ¢(zj—1 +y (zj—1 — z;)) is a slowly varying coefficient provided n is
large. Lemma 2.15 therefore gives

2 T 2
M2~ 7T 1 1 a)P=—T1
(A%) (1'_7' _ Z’jfl)2 (-’Ej —Zj 1 /acj_1 c(§) §) (fzw].j_l 0(1_5) d£)2
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and subsequently that

T 1
[ aw%=n) q%

J

since we know already that AL = --- = A\* = )\,,. We conclude that the subintervals
are uniquely determined. Lemma 2.15 also entails that the eigenfunctions on the
subintervals all have approximately the form

Z’—:Ejfl )

J (2) = a; sin (M
Son() J (nxj_xj—l

, T € [z,

which implies a; = (—1)7"!a for arbitrary a € R, if differentiability across the
subintervals is enforced. O

REMARK 2.12. It is interesting to observe that to first order the asymptotic be-
havior of the eigenvalues only contains average information concerning the coefficient
whereas the asymptotic behavior of eigenfunctions reflects local averages taken at the
scale determined by the number of its zeros.

2.4. Low frequency spectral asymptotics. In this section we consider the
asymptotic behavior of the low frequency part of the spectrum. We describe it in the
regime where the length z¢ of the medium is large. That is, we consider the problem
_Cz(x)azzu = Au, z € [0,180] > (2.20)

u(0) =0, u(zg) =0

in the limit zg — oco. Observe that we allow for large O(1) fluctuations in the local
speed c. If we set € = 1/x9 and make the change of variables y = ez this problem
becomes

€

_2(Y € _ A€ _ Y€ €
? (L) dyyut = Zu = Au, yelo,1], (2.21)
u¢(0) =0, u(1) = 0.

This is a homogenization scaling. The self-adjoint case when ¢ is periodic is discussed
in [1], for instance, and the case when ¢ is random and varies on a microscale is
discussed in [10]. Wave propagation in the quasistatic limit correpsonding to a scaling
of the above type is discussed in for instance [14, 15] where the group velocity in this
limit is derived from the homogenized equations. Here we consider the leading part
of the spectrum of the non self-adjoint problem with rapidly varying coefficients. It
can be characterized by the following proposition.

Proposition 2.13. Let zg € R and (An(x0), pn(x;z0) be the n’th pair of eigen-
value and function of the Dirichlet problem (2.20). For f € C' assume that

S

/0 e (2) fls)ds = e;? /0 F(8)ds(1 + O(e?)) (2.22)

€

with
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Then
An(@o) ~ (nm)*c: /g (2.23)
on(z;T0) ~ ;—Osin(nﬂx/mo) (2.24)
as o — 00.

Proof. As in the proof of Proposition 2.11 we use a shooting argument to solve the
eigenvalue problem. It involves normalizing the eigenfunction by requireing 9,¢(0) =
1 and writing (2.21) as:

(2.25)

=0y =72 (L) A%, yel0,1],
©°(0) =0, Gy (0) = 1.

Again for A° = 0 no non-trivial solution can be found. By increasing A¢ the value of
¢ can be reduced until it becomes zero for the first time. This value gives the first
eigenvalue A\ and the corresponding leading eigenfunction ¢$. In order to describe
these for z large we introduce v = (vy,v2)T = (5, cpi,y)T and obtain the initial value
problem

_ 0 1 _ T
Uy = |:_)\502 0:| v, U(O) - (05 1) .
Then, we construct an approximating sequence v™ by letting

0 1

0 _ 0
o0 = [_ - 0] ¥y
and
0 1
n __ n—1
vy = [—)\ic_2 0] v, n>1, (2.26)

with v™(0) = (0,1). The increments dv™ = v™ — ("~ 1) solve the same equation (2.26)
and we find

Yy
166711(0) < L+ (xe/e)?) [ 166" D2 (s) ds.
0
Observe next that

1601 (y) = X

[foy(c_2 - 0(1_2)11(1)(8) ds]

and

n

o) <@ s,

where here and below ¢; are constants independent of €. Thus, v" form a Cauchy
sequence and

sup [of — ¢f|(y) < €Pe .
ye(oil)
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We next establish that v) is close to the principal eigenfunction associated with the
constant speed c,. This follows since explicitly

Dy = VA 2y)
' AjE

moreover, |[v?(1)] < e?exp(cy) and y = 1 is the first zero of ¢ which is a positive
function, thus, ey > 0 such that Ve < €p:

XS = (rea)?] < ePey
“(y) — sin(my)

| < €feq
y€(0,1) ™

Finally, upon a normalization and a change of argument we arrive at (2.23) for n = 1.

Next, we consider the case with general n which follows by induction. Let ¢, be
the n’th eigenfunction associated with (2.25) which can be constructed as above via
a shooting procedure where A€ is successively increased. The eigenvalues are again
identified with those values for A\¢ that give a new zero in the interval [0, 1], since the
additional zero only can enter at y = 1 because ¢, = 0 only for ¢ = 0.

Now assume that (2.23) hold for the first n eigenfunctions. Then, d¢; > 0 so that
for € < ¢

0y 5 (1] > 1/2,

it follows that Jc;(n) > 0 such that |Af,,; — Ar,| > ¢1(n). By an argument as above
Jca(n) such that

sin(y/A741/¢2y)

sup |[pp41(y) —
y€(0,1) " V’\5L+1/C$

and we find 3cz(n) > 0 such that sin(/AS;/c2y) has exactly n + 2 zeros in [0,1 +
€Pc3(n)]. Now, by proceeding as above, (2.23) follows for n + 1 and therefore for
general n. O

REMARK 2.14. The condition (2.22) is satisfied with p = 1 if for instance

| S 6P6C2(")

¢ (z) = (1 + 4/ ()
with p(zx) being a bounded function. More generally for
¢ (z) = (1 + v(z))

we find

[ (¢) st ([ s (v (2) o= [ () 10

with

Thus, if Y (z) = O(z'~P) with p > 0, then (2.22) is satisfied.
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3. Krylov Subspace Spectral Methods. In this section we apply Krylov
subspace spectral methods developed in [12] to the problem (1.1) with 8 =0 and the
initial conditions

u(z,0) = f(z), w(z,0)=g(x), =€ (0,1). (3.1)

3.1. Symmetrization. We first apply two similarity transformations to the
differential operator A = ¢?(x)d,, defined in (2.1). As in previous discussion, we
focus on the operator A that is the Lo(0,1)-realization A defined on dom(4) =
H?2(0,1) N H}(0,1). First, we apply the change of variables (2.16) to obtain

A=¢"20p —c (97 (2))0,, (3.2)
where, we recall,
1
= [ L
¢ = /0 G zeO, (3.3)
and
1/ 1
Next, we define the transformation V' by
Vi) =y¢(x)f(2), (3.5)
where
x ! @—1
vy =ewp | [0 ] (3.
which yields
A=V1AVf

= V71{572[Vf]zz - Eil(cl ° (Pil)[vf]z}
=9 He " + 20 f' + " f] -
e 0@ Nf +¢' f]}

=¢2f" +
:2 (%) T (= @_1)] f+
()7 (5) 7 eeen)s

= g 2" .
c'(E(;o;,l))z G ozqé—l)'> . 7

N = T

()],

It is easy to see that these similarity transformations have the property that they
symmetrize the operator 4, and they also respect the boundary conditions; i.e., if
f € dom(A) = H?(0,1) N H}(0,1), then V(f o ') € dom(A), and conversely.
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3.2. Krylov Subspace Spectral Methods for IBVP. Once we have precon-
ditioned the operator A to obtain a new self-adjoint operator A, we can use Krylov
subspace methods developed in [12] to compute an approximate solution. These
methods are Galerkin methods that use an approximation for each coefficient of the
solution in the chosen basis that is, in some sense, optimal.

3.2.1. Reduction to Quadratic Forms. We begin with an orthonormal set of
N trigonometric functions

bo(z) = V2sin (nwz), 0<w <N, (3.8)

that satisfy the boundary conditions. We seek an approximate solution of the form

N
a(z,1) = ) Gu(t)gu (), (3.9)
w=1
where each coefficient 4, w = 1,..., N, is an approximation of the quantity
Uw(t) = <¢w;u('at))' (310)
Since the exact solution u(z,t) is given by
u(z,t) = Ro(t)f(x) + Ri(t)g(2), (3.11)

where Ry(t) and R;(t) are defined in (2.7), (2.8), we can obtain 4, by approximating
each of the quadratic forms

ch () = (bu +0f, Ro(t)[¢w + f]) (3.12)
¢, (t) = (b — 6f, Ro(t)[p — 6£)) (3.13)
sh(t) = (¢ + 89, Ra(t)[pw + 5g)) (3.14)
8, (t) = ($u — 89, R1(t)[¢w — 0g]) , (3.15)
where § is a nonzero constant, since
wio=LOGO  2O-nO 5.16)

Similarly, we can obtain the coefficients 9, of an approximation of u;(z,t) by approx-
imating the quadratic forms

¢t @) = —(¢w + 6, AR (t)[pw + 6] (3.17)
c; (1) == (¢ — 0f, AR, (t)[¢, — 0 £]) (3.18)
sH(t)' = (dw + 89, Ro(t)[d + dg]) (3.19)
55, ()" = (¢ — 09, Ro(t)[b., — d9]) - (3.20)

As noted in [12], this approximation to u(z, t) does not introduce any error due to dif-
ferentiation of our approximation of u(z,t) with respect to t—the latter approximation
can be differentiated analytically.

It follows from the preceding discussion that we can compute an approximate
solution @(z,t) at a given time T using the following algorithm.

ArLGorITHM 3.1. (Krylov Subspace Spectral Method for IBVP) Given
functions ¢(z), f(x), and g(x) defined on the interval (0,1), a final time T, and an
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orthonormal set of functions {¢1,...,Pn} that satisfy the boundary conditions, the
following algorithm computes a function @(x,t) of the form (3.9) that approximately
solves the problem (1.1), (3.1) fromt=0tot="T.

t=0
Choose a nonzero constant &
while t < T do
Select a time step At
f(z) = i(z,t)
9(z) = (1)
for w=1to N do
Compute the quantities ¢} (At), ¢ (At), s} (At), s; (At),
cE (ALY, 5 (AtY, sh (ALY, and s (AD)
(D) = 35(ch (1) = ez (1) + 55 (s (1) — 55(1)
8 (A8) = 1 (ch () — a3 (8)) + 25 (3 (1) — 55 (1))
end

iz, t + At) = XN | ¢, (2)a, (At)
iy (z,t + At) = Y0 ¢, ()0 (A)
t=t+ At

end

3.2.2. Computation of the Quadratic Forms. We now discuss the approxi-
mation of quantities of the form

I[f] = {un, f(A)un) (3.21)

where A is the L»(0, 1)-realization of a self-adjoint differential operator A defined on
dom(A) = H2(0,1) N H}(0,1), f is a given analytic function and ux(z) is a function
of the form

N
un(z) = Z U P (). (3.22)
w=1

Given this representation of uy, we can approximate this quantity by
IN[f] = uy f(An)un (3.23)
where uy = [ w(z1) - un(zn) ]T, and Ay is an N x N symmetric matrix that
approximates the operator A on the space spanned by {¢1,...,¢n}. For example, we

may choose
N
[ANlis = D ok (@) (b, Ade)e(;), (3:24)
kyf=1

or use a finite-difference approximation that takes the boundary conditions into ac-
count. In particular, if we use a three-point stencil, then Ay is a tridiagonal matrix.

We can compute this quadratic form using techniques described in [4]. Let Ay
have eigenvalues

a:)\lz---Z)\N:b, (3.25)
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with corresponding eigenvectors qy,...,qy. Then
IN[f] = uh f(AN)un (3.26)
N
=2 _fO)lajunf (3.27)
j=1
b
- / FOVda(N) (3.28)
where a()) is the piecewise constant measure
0 A<a
a(A) =< Yilafun XN <A< . (3.29)

Y lafun? <A

We can approximate the value of this Riemann-Stieltjes integral using Gaussian
quadrature. Applying the symmetric Lanczos algorithm to Ay with initial vector
uy, we can construct a sequence of polynomials p1,...,pk that are orthogonal with
respect to the measure a(\). These polynomials satisfy a three-term recurrence rela-
tion

ﬂj+1pj+1 AN =0- Olj+1)pj()\) - 5jpj—1()\)a (3.30)
1
p—l()‘) =0, pO()‘) R TIRTIE (331)
[lunll2
which can be written in matrix-vector notation as
Apk (A) = Jrpr(A) + Brpr (Nek (3.32)
where
aq ,Bl
po(N) B ar B
pK()\) = , Jx = ) T (333)
pKfl(A) ". ". IBK—I

Br—1 oK

It follows that the eigenvalues of Jx are the zeros of px(\), which are the nodes for
Gaussian quadrature. It can be shown (see [8]) that the corresponding weights are
equal to the squares of the first components of the normalized eigenvectors of Jj.

3.2.3. Accuracy of the Approximate Propagator. We now state and prove
a result concerning the accuracy of the approximate propagator

5 [ Re(t) Rui(t)
P=| iR R (3:34)

defined implicitly by Algorithm 3.1. We first use the following result from [12].
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Lemma 3.2. Let A be an N x N symmetric positive definite matriz. Let u and v
be fized vectors, and define us; = u+0v. For j a positive integer, let §;() be defined
by

- 1 -

3;(6) = 5erTjer|lusl3, (3.35)
where Ty is the K x K Jacobi matriz produced by the K iterations of the symmetric
Lanczos algorithm applied to A with starting vector us. Then, for some n satisfying

0<n<i,

g;(8) = g;j(=9)

=uT A
% u Alv +
j—K , ‘
ef [TFXT — XTAF] rek T/ " teju’u+ (3.36)
k=K
52 =X , . "
5 ef [T(fXéT - X(;FA’“] rgengf - elu(;Tu(;
k=K
d=n
Proof. See [12]. O
Corollary 3.3. Under the assumptions of the lemma,

26

for 0 <j <2K.
We can now describe the local truncation error of each component of the computed
solution.

Theorem 3.4. Assume that c(z)?, f(z), and g(x) belong to span{d1,...,dn},
and let u(x, At) be the exact solution of (1.1), (3.1) at (x,At), and let i(x, At) be the
approximate solution computed by Algorithm 3.1. Then

[{bus u(, At) —a(, Ab))| = O(AE*K) (3.38)

where K is the number of quadrature nodes used in Algorithm 3.1.
Proof. Let g(d6) be the function from Lemma 3.2 with A = Ay, , where N =

2KN,u=¢, and v =1, where f = [ f(z1) --- [f(zng) ]T. Furthermore, denote
the entries of T by

B1() aa(d)  Ba(d)
Ty = : : (3.39)

Br2(8) ax1(8) Br_1(5)
Br-1(0)  ax(d)

Finally, let 5o(6) = ||us||2 and Bk () = ||rs||2, and let

= 5lel (A1) — e (A1)] = (6, Ro(AD) ). (3.40)
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Then, by Lemma, 3.2 and Corollary 3.3,

> 2 05 — Ao —
(s Ro(A8)f) =y = 3 (1) (At) {% A%y %5%(5)}

A 2 oT 42
=1y o {(ge, A% ) — LA £+

= (2)!

2j—K d

Z el 75 [TFx] — xT A% ] reﬂT%’“el} +

k=K 6=0

O(SAL*K)

At2E L d _
= K] e1 % [T(SKX(; XgAﬁK] relkTK e, +

=0
O(sAL*K)
2K K-1
= (At el % Z Tlexr] AK it re; . T5 e +
7= 6=0

O(5A*K)

ALK o d ko1 o7 T K1 2K
= (2K)1e1 7 [Ty 'ekr; | reg T " "er + O(JAE™)

: =0

1 At?K 4 _ 2

=5 CK) & [lIrs|lel T 'ex] + O(5At*K)
: 6=0

1 Ag?K

= 32K % (Bo(8)--- Bk (9)*|  +0(3ALK)
: 6=0

= 0(At*K) (3.41)

A similar result holds for s, = (¢, Ri(At)g). O

Note that the proof assumes that Algorithm 3.1 uses a discretization of A on an
Ng-point grid, where Nx = 25X N. This grid refinement is used to avoid loss of infor-
mation that would be incurred on an N-point grid when multiplying gridfunctions. In
practice this refinement is seen to be unnecessary when the coefficients are reasonably
smooth. When it is needed to ensure sufficient accuracy, its effect on the efficiency of
Algorithm 3.1 is minimized by the fact that K is typically chosen to be small (say,
K =2 or K = 3). Implementation details discussed in [13] also mitigate this concern.

3.2.4. Non-Orthogonal Basis Functions. Ideally, we would like our trial
functions to be approximate eigenfunctions of the symmetrized operator A obtained
previously. Although the eigenfunctions of this operator are orthogonal, we cannot
assume that any basis of approximate eigenfunctions is necessarily orthogonal as well.

Suppose that we refine our initial (orthogonal) basis of approximate eigenfunctions
of the form (3.8) to obtain a new basis {¢.(z)} =, so that each function @, (z) is a
sparse combination of functions of the form (3.8); i.e.,

® =3C (3.42)
where the matrices ® and & are defined by

B =j(w:), @i =dj(x:), wi=ilz, 0<i<N, (3.43)
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and the matrix C is sparse. Then, if we define the vector u(t) to be the values of our
approximate solution i(x,t) at time ¢t and the gridpoints z;, ¢ = 1,..., N — 1, then
we can efficiently obtain u(t + At) by computing

u(t + At) = dC(CTO) ia(t + At) (3.44)
where the vector t(t + At) is defined by
[i(t + At)]w = (Bu, Ro(t)i(-, 1) + Ry (t)as(-, 1)), 0<w < N. (3.45)

Generalizing, if we obtain the matrix ® representing the values of approximate eigen-
functions by a sequence of transformations C4,...,Cy where each Cj, j = 1,...,k,
has O(1) bandwidth, and the integer k is small, then we can still compute the solution
in O(N) time per time step.

3.3. Numerical Experiments. To test our algorithm we solve the problem
(1.1), (3.1) fromt=0to t = 1.

3.3.1. Construction of Test Cases. In many of the following experiments, it
is necessary to construct functions of a given smoothness. To that end, we rely on
the following result (see [9]):

Theorem 3.5. Let f(x) be a 2n-periodic function and assume that its pth deriva-
tive is a piecewise C1 function. Then,

|f(w)| < constant/(jw[PT* + 1). (3.46)

Based on this result, the construction of a CP*! function f(z) proceeds as follows:
1. For each w = 1,...,N/2 — 1, choose the discrete Fourier coefficient f(w)
by setting f(w) = (u + iv)/|wP™ + 1|, where v and v are random numbers
uniformly distributed on the interval (0,1).
2. Foreachw =1,...,N/2—1, set f(—w) = f(w).
3. Set f(0) equal to any real number.
4. Set f(x) = 2| 1<ny2 flw)e?mive,
In the following test cases, coefficients and initial data are constructed so that their
third derivatives are piecewise C', unless otherwise noted.

We will now introduce some functions that will be used in the experiements
described in this section. As these functions and operators are randomly generated, we
will denote by Ry, Ra, ... the sequence of random numbers obtained using MATLAB’s
random number generator rand after setting the generator to its initial state. These
numbers are uniformly distributed on the interval (0, 1).

We will make frequent use of a two-parameter family of functions defined on the
interval [0,1]. First, we define

0@ =Red S f@+e)eer b k=01, @an
|w|<N/2,w#0

where

~

fj (w) = RjN+2(w+N/2)—1 + iRjN+2(w+N/2)- (348)
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The parameter j indicates how many functions have been generated in this fash-
ion since setting MATLAB’s random number generator to its initial state, and the
parameter k indicates how smooth the function is.

In many cases, it is necessary to ensure that a function is positive or negative, so
we define the translation operators ET and E~ by

E*f(@)=f(z) - min f(z)+1, (3.49)
E™f(z) = f(w) — max f(z) —1. (3.50)

It is also necessary to ensure that a periodic function vanishes on the boundary, so
we define the translation operator Ey by

E°f(z) = f(z) - f(0). (3.51)

3.3.2. Discretization and Error Estimation. The problem is solved using
the following methods:

e A finite difference scheme presented by Kreiss, et. al. (see [11]).

e The Krylov subspace spectral method with K = 2 Gaussian quadrature nodes
and the basis (3.8).

e The Krylov subspace spectral method with K = 2 Gaussian quadrature nodes
and a basis obtained by applying two iterations of inverse iteration to each
function in the basis (3.8).

In all cases, the operator A = ¢()%0,, is preconditioned using the similarity trans-
formations described in Section 2 to obtain a self-adjoint operator .A. Then, the
L5 (0, 1)-realization of A defined on H2(0,1) N Hj(0,1) is discretized using a matrix of
the form (3.24) that operates on the space of gridfunctions defined on a grid consisting
of N equally spaced points z; = jAz, where Ax = 1/(N + 1), for various values of
N.

The approximate solution is then computed using time steps Aty = 2%, k =

0,...,6, so that we can analyze the temporal convergence behavior. Let u'® (z,t),
k =0,...,6, be the approximate solution computed using time step At;. For k =
0,...,6, the relative error Ey, in u(*) (2,t) at ¢t = 1 is estimated as follows: We use the

same method to solve the backward problem for (1.1) with end conditions
uw(z,1) =u® (z,1), w(z,1) =— (k)
,1) = 1), w(z,1) = —u; ' (z,t), z€(0,1). (3.52)

Let v(®)(z,t) be the approximation solution of the inverse problem, for k = 0,...,6.
Then we approximating the relative difference between v(*) (z,0) and u*~V)(z,0) =
f(z) in the Ly-norm; i.e.,

_ Iu®(,0) = v® (o)l

By ~ , 3.53
‘ TGIEOIE (3.53)

where

[u(k)]j = u(k)(xj,O), [v(k)]j = (k) (2;,0), =z; =jAx. (3.54)
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F1c. 3.1. Smooth wave speed c(x) = fo,3(x)

3.3.3. Results. We first solve the problem (1.1), (3.1) with smooth data

c(z) = fos(x), f(zx)=fiz(x), g(z)=f23(z). (3.55)

The functions ¢(z), f(z), and g(z) are plotted in Figures 3.1, 3.2, and 3.3, respectively.

The temporal convergence is illustrated in Figure 3.4, where N = 31 gridpoints
are used in all cases. The finite difference method of Kreiss, et. al. converges quadrat-
ically, whereas approximately 6th-order convergence is attained using the Krylov sub-
space spectral method. Note that the use of inverse iteration does not improve the
convergence rate, but it does yield a more accurate approximation for larger time
steps.

In Figure 3.5, all three methods are used to solve (1.1), (3.1) with time steps
Atp = 2% and mesh sizes Az, = 2=*+5 for k = 0,...,3. The finite-difference
method converges quadratically, while the Krylov subspace spectral method without
inverse iteration exhibits quintic convergence. Using inverse iteration, the convergence
is only superquadratic, but this is due to the fact that the accuracy is so high at
Aty = 1 that the machine precision prevents attaining a faster convergence rate for
smaller time steps.

Both experiments are repeated with data that is not as smooth. Specifically, we
use

c(z) = for(x), f(x)=firlz), g(=z)=f2,1(z). (3.56)
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initial data u(x,0), smooth
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The functions ¢(z), f(z), and g(z) are plotted in Figures 3.6, 3.7, and 3.8, respectively.
The results corresponding to Figures 3.4 and 3.5 are illustrated in Figures 3.9 and
3.10, respectively. As expected, the accuracy and the convergence rate are impaired
to some extent. This can be alleviated by refining the spatial grid during the Lanczos
iteration, as described in [12], in order to obtain more accurate inner products of
functions; we do not do this here.

3.4. Gaussian Quadrature in the Spectral Domain. Consider the compu-
tation of the quadratic form (@, f(A)¢.) where ¢, (z) is defined in (3.8) and A is
defined in (3.7). Figures 3.11 and 3.12 illustrate the relationship between the eigen-
values of A and the Gaussian quadrature nodes obtained by the symmetric Lanczos
algorithm that is employed by Krylov subspace spectral methods. In Figure 3.11, the
speed ¢(x) is defined to be c¢s,1(x), which is shown in Figure 3.1. Since the speed is
smooth, @, (x) is an approximate eigenfunction of A, and it follows that the nodes are
clustered around the corresponding approximate eigenvalue. In Figure 3.12, the speed
is ¢(z) = 14 1 cos(32rz). Because of this oscillatory perturbation, the eigenvalues do
not define a smooth curve, as seen in the top plot. Note that the sharp oscillations in
the curve traced by the eigenvalues correspond to sharp changes in the placement of
the two quadrature nodes.

4. Conclusions. We have considered wave propagation in one dimension in the
case of heterogeneous and complicated coefficients. Our point of view has been to
consider the analytical structure of the solution operator in order to derive asymptotic
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initial data ut(x,O), smooth
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F1G. 3.3. Smooth initial data u¢(z,0) = g(z) = fo2,3(x)

properties for the spectrum. In particular, we considered non-selfadjoint problems
with small fluctuations in the coefficients and problems where the fluctuations are
large and rapid, respectively. We then derived techniques for efficient and accurate
numerical wave propagation that are based on using low-dimensional Krylov subspace
approximations of the solution operator to obtain components of the solution in a basis
of trial functions in a Galerkin-type scheme. We demonstrated that this approach
gives a high-order approximation which converges faster than competing methods in
the problems that we have considered.

Developing theory and numerical procedures for wave propagation in rough and
multiscale media is important in a number of applications, such as analysis and design
of algorithms for solving inverse problems related to propagation in the ocean, the
atmosphere or in the heterogeneous earth, for instance. Such applications require us,
however, to consider propagation in several spatial dimensions, and our main aim is to
generalize and integrate further our approach to deal with multiple spatial dimensions.
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Dirichlet problem, overall convergence, smooth data
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5 Dirichlet problem, temporal convergence, non—smooth data
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Dirichlet problem, overall convergence, non-smooth data
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Aty, = 2% and mesh sizes Az, =25 for k =0,...,3.
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Approximate eigenvalues, smooth speed
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F1G. 3.11. Approzimate eigenvalues of the operator A = c3,1(z)0zs, and Gaussian quadratures
nodes of a 2-point rule used to approzimate (¢pu, f(A)du) where A is defined in (3.7), plotted against
the wave number w. For each eigenvalue, the wave number is determined by the dominant frequency
of the corresponding approzimate eigenfunction.
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Approximate eigenvalues, non—-smooth speed
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Fi1g. 3.12. Approzimate eigenvalues of the operator A = (1 + %cos(327rm)8m, and Gaussian
quadratures nodes of a 2-point rule used to approzimate (¢, f(A)p.) where A is defined in (3.7),
plotted against the wave number w. For each eigenvalue, the wave number is determined by the
dominant frequency of the corresponding approzimate eigenfunction.



